Emerging properties of hydrogels in tissue engineering
نویسندگان
چکیده
Hydrogels are three-dimensional polymeric networks filled with water and mimic tissue environments. Therefore, they are considered optimal to deliver cells and engineer damaged tissues. The hydrogel networks have been significantly modified to endow biochemical functionality with adhesive ligands, growth factors, or degradable sites that are helpful to drive proper cell functions. Recently, some of the biophysical properties of hydrogels have emerged as key players in dictating cell fate. Beyond static stiffness, time-dependent stress/strain changes in the interaction with cells and the cell-mediated degradation and matrix synthesis have been demonstrated to shape cell status and tissue repair process. We highlight here the emerging biophysical properties of hydrogels that can motivate tissue engineers to design and develop hydrogels optimally for tissue regeneration.
منابع مشابه
Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology
Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...
متن کاملIn Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration
Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...
متن کاملEvaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method
Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...
متن کاملTransient dynamic mechanical properties of resilin-based elastomeric hydrogels
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we de...
متن کاملMicrofluidic fabrication of microengineered hydrogels and their application in tissue engineering.
Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great ben...
متن کامل